Uncertainty Driven Multi-loss Fully Convolutional Networks for Histopathology

نویسندگان

  • Aïcha BenTaieb
  • Ghassan Hamarneh
چکیده

Different works have shown that the combination of multiple loss functions is beneficial when training deep neural networks for a variety of prediction tasks. Generally, such multi-loss approaches are implemented via a weighted multi-loss objective function in which each term encodes a different desired inference criterion. The importance of each term is often set using empirically tuned hyper-parameters. In this work, we analyze the importance of the relative weighting between the different terms of a multi-loss function and propose to leverage the model’s uncertainty with respect to each loss as an automatically learned weighting parameter. We consider the application of colon gland analysis from histopathology images for which various multi-loss functions have been proposed. We show improvements in classification and segmentation accuracy when using the proposed uncertainty driven multi-loss function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

On the influence of Dice loss function in multi-class organ segmentation of abdominal CT using 3D fully convolutional networks

Deep learning-based methods achieved impressive results for the segmentation of medical images. With the development of 3D fully convolutional networks (FCNs), it has become feasible to produce improved results for multi-organ segmentation of 3D computed tomography (CT) images. The results of multi-organ segmentation using deep learning-based methods not only depend on the choice of networks ar...

متن کامل

Propagating Uncertainty in Multi-Stage Bayesian Convolutional Neural Networks with Application to Pulmonary Nodule Detection

Motivated by the problem of computer-aided detection (CAD) of pulmonary nodules, we introduce methods to propagate and fuse uncertainty information in a multi-stage Bayesian convolutional neural network (CNN) architecture. The question we seek to answer is “can we take advantage of the model uncertainty provided by one deep learning model to improve the performance of the subsequent deep learni...

متن کامل

BIRNet: Brain Image Registration Using Dual-Supervised Fully Convolutional Networks

In this paper, we propose a deep learning approach for image registration by predicting deformation from image appearance. Since obtaining ground-truth deformation fields for training can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) Coarse guidance using deformation fields obtained by an existing registration method; and (2) Fine guidance using i...

متن کامل

Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks

Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017